P

FINAL REPORT

FOR THE

SUMC RECONFIGURABLE MICRO-ASSEMBLER

17 DECEMBER 1973

{NASA-CR-120178)

BICRO-ASSEMBLER Final Report
(8cDonnell-Douglas Astronautics Co.)

HC $4.50

-~

L My

SUEC RECONFIGURABLE

e
=
o,
Cad

“r

H74-19832
26 p
CSCL 09R Unclas i
G308 16489
PREPARED FOR:

NATIONAL AERONAUTICS & SPACE ADMINISTRATION
MARSHALL SPACE FLIGHT CENTER
HUNTSVILLE, ALABAMA 35812

PREPARED BY:

MCDORNELL DOUGLAS ASTRONAUTICS COMPANY

5301 BOLSA AVENUE
HUNTINGTON BEACH, CALIFORNIA 92647

Reproduced by

NATIONAL TECHNICAL

. ARDS
INCIPAL INVESTICATOR

INFORMATION SERVICE

US Depariment of Commerce
Springfisld, YA. 22151

I, Fort

D, W. GIEDT
PROJECT MANAGER

NOTTIOCGCE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE

BEST COPY FURNISHED US BY THE SPONSORING

AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CER-

TAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RE-
LEASED IN THE INTEREST OF MAKING AVAILABLE

AS MUCH INFORMATION AS POSSIBLE.

PREFACE

This document constitutes the final report for the Micro-Assembler segment
(84/k4) of the Techniques for the Generation of Suppert Software project being
performed for NASA MSFC under Contract NAS8-27202.

If additional information is required, please contact any of the following
McDonnell Douglas or NASA representatives:

© Mr. D. W. Giedt, Project Manager
Huntington Beach, Californis
Telephone: (71k4) 896~4908

© Mr. A, J. Edwards, Principal Investigator
Huntington Beach, California
Telephone: (T71k) 896-3872

© Mr. G. M. Jones, Contract Administrator
Huntington Beach, California
Telephone: {T1lh) B96-2795

°© Mr. B. C. Hodges, Project COR, S&E-COMP-C
Marshall Space Flight Center, Alebams
Telephone: (205) #53-1385

II.

III.

vI.

VII.

CONTENTS

SCOPE

TECHNICAL APPROACH

MICRO-ASSEMBLER LANGUAGE CONCEPT

MICRO-ASSFEMBLER LANGUAGE SYNTAX

MICRO-ASSEMBLER UTILIZATION

NEW ASSEMBLER DIRECTIVES AND FUNCTIONS

1'

Option for Micro-Assembly

Rescan Source Operand

Micro-Instruction Statement Processing

Default Values for Micro-Instruction Fields
Description of IROM Data for the Micro-Assembly Module
Micro-Assembly Diegnostics

ObJject Output

USER MANUAL DOCUMENTATION

APPERDIX A SEMANTIC DESCRIPTION OF EXAMPLE MICROMAC

INSTRUCTION SET

APPENDIX B MICRO~INSTRUCTION FIELD VALUE DESCRIPTION

APPENDIX C MICRO-INSTRUCTION FIELD DESCRIPTION

APPENDTX D EXAMPLE SUMC MICRO-INSTRUCTION DEFINITION

APPENDIX E EXAMPLE SUMC MICRO-INSTRUCTION CODE

APPENDIX F USER MANUAL CHANGE PAGES

10
11
12
13
14

I.

II.

IIT.

SCOPE

The objective of this effort was to develop a reconfigurable micro~assembler
to provide the micro-programmer the capability to specify micro-instructions
in concise, meaningful terms. The micro-assembler adds an important capa~
bility to the SUMC software development facility since firmware micro-
programming is an essential part of the SUMC software development process.

TECHNICAL APPROACH

The implementation plan for the development of the micro-assembler was
predicated on the existing capabilities of the SUMC Reconfigurable Assembler.
Utilizing the reconfigurable assembler ns a base, new directives and existing
directive modifications were implemented to provide the micro-assembly as a
new capability of the reconfigurable assembler.

MICRO-ASSEMBLER LANGUAGE CONCEPT

The miero-assembler language allows the specification of all micro-instruction
control fleld settings in one concise sssembler source statement. Via instruc-
tion definition directives, "micromacs" are defined to the micro-assembler
which designate amctual field settings for a selected combination of one or

more control fields. An assembler source statement then is composed of one

or more micromacs which collectively describe the operational fuiction of a
micro-instruction. This capability to define micromacs provides open-ended
micro-assembler instruction sets and overall design flexibility.

This approach benefits the micro-programming task by upgrading the micro-
assembler language from control field terms, inherent in the micro-instructions,
to micro-instruction subfunction terms. Tt will additionally result in more
readable, self-documenting progrems.

MICRO-ASSEMBLER LANGUAGE SYRTAX

The micro-instruction assembler language appears very similar to a conventional
machine instruction assembler langusge. The machine instruction assembler
languege has the characteristic of one operation specification per statement
vhereas, the micro-instruction assembler langusge allows multiple operations

to be designated per statement.

The source statement format consists of two primery fields:
1. Label field

2, Command field

The optional label field consists of a symbol that is equated to the location
counter or a value. The command field is mandatory and is composed of an
operation/operand (micromac) list. FEach operation may have multiple operands,
in which case they appesr separated by commas.

Lebel Field | Command Field

[symbol] i operation [(operand)] [,operation[(operand)]....)

vhere: [] means "optional™
... means "and more of the same"

MICRO-ASSEMBLER UTILIZATION

The design objective for the creation of micromscs is to identify a complete
set of data gating functions that is a "natural” subset of the operational
capability of one micro-instruction. A micro-instruction then is conatructed
from one or more micromaes that collectively describe the functions to be
performed.

A sample micromac instruction set has been designed and semantically described
for discussion purposes in Appendix A. This candidate micromac mnemonic list
has been functionally categorized as follows:

1. Main memory operstions

2. Seratchpad memory operations
3. Adder operations

L. Register operations

5. Control operations

It should be noted that thege categories are arbitrarily assigned for illustra-
tive purposes only and are based on the example micromac instruction set.

Since micromacs must be defined to the assembler, the mnemonic assignment and
format design is also arbitrary. This provides flexibility to the language
definer at language definition time as well as to the programmer at sssembly
time.

Each micromac is defined in terms of miero-instruction fields and their rea-
rective value settings. Appendix B describes the micro-instruction field
values for the example micromac instruction set. Appéndix D illustrates the
asgembler directives to implement these micromacs for micro-instruction
assembly. Appendix E is an example of a micro-instruction assembly utilizing
the example micromac instruction set.

VI. NEW ASSEMBLER DIRECTIVES AND FUNCTIONS

1.

Option for Micro-Assembly

The OPTION statement has an additional operand to designate the
type of assembly, machine instruction level or micro-instruction level.

operand format:

TYPE = ¢

wvhere t NORMAL: or MICRO

Rescan Source Operand
The IFORM directive has an additional operand for resetting the scan
cursor to multiply process a source statement operand. This provides
the ability to set multiple fields based on an operand since one field
can be set per scan,

operand format:

RC

Micro~Instruction Statement Processing
The internal statement processing logic is altered for micro-instructions
since they are composed of one or more micromacs. This necessitates
multiple IFORM's to be processed per stetement.
Default Values for Micro-Instruction Fields
A new assembler directive has been implemented for specifying the default
values for micro-instruction fields. Defsult values are then used for

those fields that are not set by micromacs for a micro-instruction.

directive format:

Label Operation Operand

DFIELDS value=(gtart-end)[,value=(start-end)...] |

where: _ value ~ field default value

(start-end) - bit positions of a field

6.

Description of IROM data for the Micro-Assembly Module

A new assembler directive has been implemented for specifying the IROM
data word structures that correspond to the micro-assembly module. The
object output occurs in the vector symbol dictionary section and is
utilized by the linkege editor to produce a listing of the IROM memory
map for the load module.

directive format:

Label Operation Operand
symbol | VECTOR len,0=op,L=(start-end)[,value=(start-end)...]
vhere: 1len - No. bits in TROM data word

symbol - micro-assembly module (vector) entry point label

op - value for 0 (op code)

| (stert-end) - bit positions of the location (L) or a value
field in the IROM data word
value ~ field setting value

Micro-Assembly Disgnosties

A new assembler directive has been implemented for designating micro-
instruction fields to be diagnostically controlled by the assembler
for multiple value settings for one micro-inatruction statement.

directive format:

Label Operation Operand

MFIELDS (start-end)[,(start-end)...]

vwhere: (start-end) - bit positions of one of the multiple fields

-l

T. Object Output
There are two new records incorporated in the cbject output mecdule.

Source Image Records

The source image records are generated as a subtype of the TXT object
section. Each source image record is formatted as follows:

P
7 7)
/ % e / % 13y | soURCE | soURCE . SOURCE
WORD 1 WORD 2 WORD 3 WORD N

Count {word 1, bits 16-6)

The number of words remalning in the current source image record: the
number of words necessary to hold 96 characters.

Cless (word}l, bits L4-1)

The text source imege record sub-type: 3

Source (words 2-N)

The source image representing 96 characters in packed integer code format.

Vector Symbol Dictionary (VSD)

A new object type has been created to contain the vector (IROM data word)
description from the VECTOR assembler directive.

VSD records are formatted as follows:

%% p— y s
::;// LENG € E VECTOR ELEMENT VECTOR ELEMENT
7 (6) ‘s
WORD 1 18T VECTOR ELEMENT Nth VECTOR ELEMENT

Leng (word 1, bits 31-17)
The number of data words in the binery object record.
Type (word 1, bits 16-1}

The new VSD object type: 6

Yector Element

Each vector element is composed of three sub-types and contains the data
from one VECTOR assembler directive.

A.

B,

Control

%/ counT // CUSS | op con
i

WORD 1 WORD 2

Count (word 1, bits 16-6)

The number of words remaining in the current control sub-type: 1
Class (word 1, bits L-1)

The vector element control sub-type: 1

Op code (word 2, right justified)

The specified op code value,

Data Fields

rd rd
P 7
;fﬁ;fan ECOUNT %?i:/ CLASS
/ STRING ADDRESS VALUE VALUE
/////LENGTH E(N’l)) (2)
4 .: /’f,//{ _"r)/
WORD 1 WORDS 2-5 WORDS 6w9 WORDS (N-3)-N

Bit string length (word 1, bits 31-1T)

The length in bits of the vector word to be constructed from the
information contained in the attached address and value fields.

Count (word 1, bits 16-6)
The number of words remaining in the current deta fields sub-type.
Class (word 1, bits 4-1)

The vector element data fields sub-type: 2

VII.

Address {words 2-5)
The address assigned by the assembler for the designated vector entry
point: represented by the normal "get/put" element object structure

a8 described in Section 5 of the Reconfigurable Assembler Detail
Specifications.

Value (subsequent Y4 word blocks)
The values to be assigned to additional fields within & vector entry
word: also represented by the normal "get/put" element object

structure.

Identification

WORD 1 WORDS 2-4

Count (word 1, bits 16-6)

The mumber of words remaining in the current identification subtype: 3
Class (word 1, bitas b4-1)

The vector element identification sub-type: 3

Character string {words 2-4)

The character string identifying the entry point: the symbol from the
VECTOR directive, in 3 words in packed integer code format,

USER MANUAL DOCUMENTATION

The user manual documentation for the micro-assembler has been ereated as
change pages to the SUMC Reconfigursble Assembler Users Manual. These are
contained in Appendix F.

APPENDIX A
SEMANTIC DESCRIPTION OF EXAMPLE MICROMAC INSTRUCTION SET

Main Memory Operations

RMM Read Main Memory

The contents of main memory specified by the adder are
gated to the memory register.

WMM Write Main Memory

The contents of the adder are gated to main memory
specified by the memory address register.

Scratchpad Memory Operation

WSM(x) Write Scratchpad Memory

The contents of the adder are gated to scratchpad memory
specified by x. ’

Adder Operations

LDA{x) Load Adder
Contents of x are gated to the adder.

LAI(x) Load Adder and Increment

Contents of x are gated to the adder and are incremented by one.
SAD(x,y) Save Add

Contents of x and y are gated to and added in the adder and the
resuit is gated to the PRR.

CAD(x) Continuation Add

Contents of x and the value in the PRR are gated to and added
to the adder,

Register Operations

IMR Zero Multiplexor Registers

Zeros are gated to the MQOR, MAR and PRR.

LIR Load Instruction Register

Contents of the memory register are gated to the instruction
register.

APPENDIX A [CONTINUED]

Contro]IQperations

JMP

PNO

JMI{x)

JIN(x)

Jump to

Micro Program

Control

is transferred to the micro program associated with

the machine instruction operation code.

This operation normally is used to conclude an

is passed to the next sequential micro instruction.

The assembler will select this operation automatically
when a control operation is not: specified by the pro-
grammer; typical programmer use of PNO is to idle one

memory cycle following an RMM,)

is transferred to the micro instruction specified by x.

(NOTE:

instruction fetch.)
Perform Next Operation
Control
(NOTE:
Jump to Micro Instruction
Control
Jump on Interrupt

If the interrupt flag I0G is on, transfer to the micro instruc-
tion spec¢ified by x; otherwise the next sequential micro instruc-

tion is

performad,

_0'['-

MICROMAC

RMM
WML (X}]
LAI(X)

JHI(X)
PNO

LIR
JIN(X)
SAD(X,Y)

CAD(X)

Z4R
JHP
LDA(X)

]

APPENDIX &
MICRO-INSTRUCTION FIELD VALUE DFSCRIPTION

MICRO-INSTRUCTION FIELDS/VALUES (REFER TO APPENDIX C FOR FIELD DESCRIPTIONS)

MOC=B'111'; RSET=B'0010'; MEM=B'10"
[ADDRESS=(X); AM=(X);] Wel; AC=B'00'; POC=B'001'; MQM=B‘00'; RSET=B'000]"

ADDRESS=(X); AM=(X); AC=(X); MPXA1=8'100'; MPXB1=B'110"; ADD1=B'011'; ADD2=B'011'; FC=1;
EALU=B'171100"

SEQ-IC=B'1101"'; XFER=(X)

AC=B‘11'; MPXAI=B'100'; EALU=B'111100'; S£Q-IC=B'0000"
MPXA1=B'100'; RSET=B'1000"'; EALU=B'111100"
SEQ-1C=B'1000*; XFER=(X)

ADDRESS=(X); AM=(X); AC=(X); MPXB1=B'110'; MPXB2=(Y); ADDI=B'011'; ADD2=B'011';
POC=B'001; RSET=B'0100"

ADDRESS=(X); AM=(X); AC=(X); MPXA1:=B'0CO'; MPXB1=B'110"; ADD1=B‘011'; ADD2=B'011';
RSET=B'0001'; EALU=B'111100°

AC=B'11"'; MPXA1=8'100'; POC=B'000"; MOC=B'000'; MOM=B'00'; RSET=B'0100'; EALU=B'111100°
SEQ-IC=B'0101"

ADDRESS=(X); AM=B'01'; AC=(X); MPXA1=B*100'; MPXB1=B*110"'; MPXB2=B'00000'; ADDI=B'011';
ADD2=R'011'; EALU=B'111100"

POC=B'001'; RSET=B'0100'; MEM=B'Q]"®

—'E‘t—

APPENDIX C

MICRO-INSTRUCTION FIELD DESCRIPTION

I
| SPM MPXAT | MPXB1 | MPXB2 |ADDY ADD2 ALU 1 0 PRM MAM MM RSET MEM
P IP M
FIC}iI SIS S
ADDRESS AMIW[AC [MPXAT {HMPXB1 | MPXB2 {ADD] ADDZ fC IL {0 jpPOC T Icl moc!l T MQM RSET MEM
0 S678 910 11 713 1416 17 21 22 24 2527 2829 30 31 33 34 357 39 40 41 42 4% 46 47
ACC
EALU FPiM SIC CNT ROM XFER ADD
S{HID{E|C}ICTIPTS AlC
PIRIE[R|O{A|R{H C N XFER
£ |E NJRIELF | SEQ-IC CiT
48 53 9455 Hp 59 60 61 62 7
ADDRESS = SPM address CL = Carry latch SPE = SPM exponent
AR = SPM address modifier 10 = Input/output control MRE = Memory register exponent
b = SPM write control POC = PRM operation control DE = Derived exponent
AC = SPM word access control PST = PRM shift type ER = [Exponent register
MPXAI = Multiplexer Al control PSC = PRM shift control CON = EALU control
PXB1 = Multiplexer B) control MOC = MAM operation control CAR = Forced carry
wpiB2 = Multiplexer B2 control MST = MAM shift type PRE = Precision
ADDIY = Arithmetic uait #1 operation MQM = MQM operation control SHF = FPM shift allow
ADD2 = Apithmetic unit #2 operatfon RSET = Register set SEQ-IC = Sequencer iteration control
FC = Force carry MEM = Memory control ACC = ACLCS control signal
CNT = CNT control signal
XFER = ROM transfer address

APPENDIX O e e oot e e

* EXAMPLE SUMC MICROINSTRUCTIUN UDEFLNITION,
MODE MICRO o
SIZE 1024,72 .
MEIELDS (0=S)e(6=7)s(B8)s(9=10}4{21=13)¢{14=16)+(17=213+ *
(22-28) 9 (252719 (28) (290 4¢030) ¢ (31a33)4(34)4(35) *
{36=38) 4 (39) 4 (H4D=41) s (UE=UT) 4 (48=53) 4 (5414 (5B)y *
(56«59 (B60)+(61)4(62=T1)

SKFMAC CCODES "PCY = Gy 'A' = Dv YBY = 3B, X0 = 3

ME X5 2 CCODES *D* = 1+ 'MR' = X*'11¢',

SPMAD CCODES 'PC' = X*10', °‘A* =0y °*B*' = X'10', *X°* = X'14°*

SPMAM CCONES YPC* = gy *A' = 1, 'B' =2, X+ =3

IRMM IFCRM 72402(36-39)4X*2'=(42~45) X127 =(46-47) L

IPNC IFORM 72, 0 = (H8=53)eX*t39=(9=10), X4 = (11 =~ 13),0=(56=59)

ILTR IFORM 72+ 0 = (48-53)+ 8 = (42=45)y 4 = (11-13)

1ZMK IFORM T72+0=(48 = 53)y 4=(11-13)+4=(42-845)43=(9=10)+ *

0 = (31«33)y 0 = (26=39), U = (40=041)

IUMI IFORM 724 0 = (56«59)+M=(L(62=T1})

1 MM IFORM 7240z (31-33),4=(42-45),12(46=47)

iWSM IFGRM 72y O = (31=33)+5PNMAD=(0«5) +RC,SPMAM(6=T7)1+0=(9-107+ *
_ 1Z(8) 402 (U0-41) 1= 42=45)

ISAD IFURM 72: O = (42=45)+SPMAD S{0=9) +RCySPMAM ={6*7) +RCy *
SPPAC =(9-20) MPXB2z(17-R1)1+6c1154=16)3=(22=24) 4 *
Bol25e27)212(31=33)

1CAD IFORM 72, 0 = {(#2=45)+sSPMAD=(0~=5) yKL 4 SPMAM=(6=7) +RC *
SPMAC=({9~107v0=(10-13)+6=(187167 +3=(22-24) +3=(2B8277+ >
1S(82-45} 4 X?3C 2 (48-53)

ILDA IFGRM 72y 0 = {(6-7)+SPMAD=(0~5) +RC+SPMAC=(g=10) s t=(11=13}, *
E=(14-16)40=(17=21),3=(22=-241,3=(25-27)+X'3C'=(L4BeBZ) T T

IJMP IFORM 724 0 = ({56~59)

ILAT IFORM 72, 0=(28)ySPMAD=(0-5)sRCeSHMAM=(6=7) +sRCIX'3C z(48-53) +#

SPMACT(9=10) +4=(11=13)46=(14=16) 3= (22e20) 32 (25w27)

IJIN IFORM 72. 0 = (56+59)+ M = (L(62-T71))

KRMM CPDEF 7+ IRMM

PNO OPLDEF X*3C*'y IPNO

LIR CPDEF X*3C*'s ILIR

ZMR 0PDEF XviCty IZMR

JMp OPDEF Xe5¢, TJMP - i T -

WMM OPDEF X*1%, IWMM

WSM OPDEF X*1%, IWSM

LAT . CPDEF iv ILAI

JIN CPLEF 8y IJIN

SAD QPLEF 4. ISAD_ L

CAD OPDEF i, Icab B

LDA OPLDEF i. ILDA

JMT QPLEF 13e IJMI

-12-

APPENDIX E

* EXAMPLE SUMC MICROINSTRUCTIUN CODE

START

* FETCH NEXT MACHINE INSTRUC!ION

FETCH LAI(PC) +WSMRMMyJIN(IOG)
PNO
LIK«SAD(X0)

CAD(B) « RMM
ZMRyMp

* STORE ACCUMULATOR

STA LOACA) +WMMWJMI(FETCH)

* STORE BASE REGISTER

8718 LOA(R) «WMM«JMI(FETCH)

* STORE INDEX REGISTER

STX LOA(X) s WMM e JMI(FETCH)

* INTERRUPT HANDL ING ROUTINE
ORG X'3g9Q"
IGQG EQU X
END

2 v v

_=13=

APPERDIX F

USER MANUAL CHANGE PAGES

The following pages are replacements for the corresponding pages in the SUMC
Reconfigurable Assembler Users Manual.

~1h-

TABLE OF CONTENTS
{ CONTINUED)

Production Statements
Parameter Symbols
Procedure Levels
Comments Statements
Using SET Symbole in Procedures
SECTION 11. CONDITIONAL ASSEMELY STATEMENTS
SEQUENCE SYMBOLS
GOTD Statement
GOIF Statement
RPT Statement
TAG Statement
USING CONDITIORAL ASSEMBLY IN PROCEDURES
SECTION 12, DIAGNOSTIC CONTROL STATEMENT

NOTE Statement

USING DIAGNOSTIC CONTROL IN PROCEDURES
SECTION 13, MICRO~ASSEMBLY STATEMENTS

DFIELDS Statement

MFIELDS Statement
VECTOR Statement

Page

91
92
96
97
97
98
98
99
100
103
105
106
108
109
110
111
nz

113
114

OPTICN

Function

19R

Designate assembly requirements for source library input, automatic assembly
definition, listing output and/or object output.

Format
Name Operation Operand
blank OPTION l1list

Descripticn
list

- choices may be specified from one or more of the
following options:

library

LIB

segment

SEG

listing

controls the availability of a source
gtatement library input data set.

NOLIB : inhibit source library input
LIB=x : accept a user library named x
SYSLIB : accept the standsrd system library

controls automstic assembly definition from
& selected library input.

NOSEG : 1inhibit the processing of an assembly
definition from the source library,

SEG=y ¢ copy and process a user supplied
library segment - this segment of
source input should contain de-
finitions of a machine configuration,
an instruction set, and appropriate
system macros.

SYSSEG : copy and procegs the assembly defin-
ition contalned in the standard
syastem lidrary segmens.

controls the output of an assembly listing.

LIsT{({nlf,

XREF I])]: prepare en essembly listing

HOXREF with n lines per page,
consistent with the zub-
sequent use of the PRINT
statement; also print {XRTP)
or inhibit the nrintine
(FOXREF) of the nromrem
oymhel crosg-reforence lics,

| b

20R

NOLIST ¢ inhibit the output of an assembly listing.
ERROR=8g i print all level s diagnostics and higher
COMP=p : print the target computer name: p on columns 1-8

of the title line on each page of the assembly listing.

DATE=4 ¢ print the date: 4 on the assembly listing if the date
is not provided by the host operating system.

object - controls the cutput of an object program deck.

DECK : prepare an object output deck that is named and identi-
fied according to the subsequent use of the START
statement.

NODECK : inhibit the cutput of an object program deck.
MODE=m : assemble this object program as relocatable (m=REL)
or sbsolute (m=ARS).
type - controls the type of assembly
TYPE=% : this assembly is normal machine level (t=NORMAL) or

micro level (t=MICRO).

Example
OPTION LIB=SYSTEMT,3YSSEG,NODECK,LIST

The options stipulated in this example require the assembler to utilize the SYSTEMT
source library input data set and to automatically retrieve and zssemdle the mechine
configuration, instructlion set and system mecros that are stored under the standard
agsembly definition name: SYSSEG. An object deck is not wanted for this assembly,
while the gssembly listing is desired, and the type of assembly is normel machine level.,

Usgge

One OPTION statement may be specified for each program that is assembled; its use is
optional. When omitted, the following options are assumed: TYPE=NORMAL, LIB=SYSLIB,
SEG=SYSSEG, LIST(52,NOXREF), ERROR=1, COMP=SUMC, NODECK, MODE=REL. Options may be
specified in any order and the OPTION statement must be the first statement in the
program. The library option must be the same for separate assemblies that are part
of the same job.

The naming of a library segment in the option statement prevents the vrogrammer 7rom
having to define the assembly process himself, More specifically, the programmer
may not redefine a target computer, its mnemonic operation codes, or any of its
system macros if he has caused their definition via the OPTION statement. But, in
this case, he may extend the instruction set by defining supplementary mnemonic
operation codes and instruction formats, he may define additional mecro instruciions,
and he may specify the availability of memory and registers to the program under
assembly.

/7

| oeper |

Funetion

Specify the numeric operation code(s) and the object instruction format(s) that

T3R

correspond to a source instruction mnemonic operation code.

Formsat
Name Operation Operands
mnemonic OPDEF opcode ,Férmats[,opcode ,formats. .]

Deseription

mnemonic

opcode

formats

Exsmple

the symbolic name of a source instruction operation code.

the numeric value of the source instruction operation code -

this value gives meaning to operand form 0 in the IFORM
aggsembler-instruction for a machine level assembly.

Note - this operand field is omitted during a micro-assembly.

identification of one or more instruction formats as:

Fname
(fname[,fname...})

fname — the label nawme of an appropriate IFORM assembler-in-

struction with vwhich source instruction operands

ere formatted into appropriate bits of an equivalent

"machine instruction.

LA OPDEF X'3F',TYPEL

The mnemonic operation code LA is defined ms a hex 3F for a machine level asgembly

and its source operands are to be processed according to a TYPEL IFORM pseudo-

operation.

LA OPDEF X'3FC',SHORT,X'3F1',{LONG1,LONG2)

The mnemonic operation code LA is defined as a hex 3F0 for & machine level agsembly
if all of its source operands are specified in the SHORT IFORM assembler-instruetion,

Otherwise, LA is defined as a hex 3F1 for either LONGl or LONG2 IFORM assembler—
instructions depending on the presence of optional symbolic operand forms that

cannot be contained in a short instruction format.

LA OPDEF IF1

The mnemonic operation code LA is defined and its source operands are to be
processed sccording to an IF1 IFORM for & micro-assembly.

Usage

For each socurce instruction the desi
processed from left te right until either a successful assemb

or until a1l of the availsble formats have Fniled. Therefora, multiple IFORM
asgembler-instruction names should be orderod congigtent with the eyntactie
yriorities of the

allowable aymbolic oporands.

gnated machine instruction formets will be

1y hesa been performed

- /4§7ﬂ

This assembler instruction must follow the referenced IFORM ansembler inotructions.

T6R

—

I IFORM

Function

Specify an object instruction format for one or more source instruction mnemonic
operation codes,

Format

Name Operation | Operands

start-end -]I)]..'I

format IFORM length,0=(start-end) [,type[=(subtype=(start-end)[,]..

Deseription

format - the symbolic name of an instruction form - this name may be
referenced by the OPDEF assembler instruction.

length - the number of bits in this instruction format - this value
must be divisible by or into the size of the location counter
addressing unit (see the SIZE statement).

O= - an operation code reference ~ operation codes are symbols that
appear in a source statement mnemonic operation field and have
been equated to values via an OPDEF assembler inatruétion.

The IFORM assembler instruction incorporates these assigned
operation code values into machine instructions by means of
this symbolic operation code reference for a machine level

assembly.

Note - this operand field is omitted for a micro-assembly.

(start-end) - location of the receiving field in the assembled machine
instruction. The bit positions in the generated machine
instruction bit string into which the value of the
referenced source operand will be "OR"ed.

The allocation of a one-bit field may be designated by omitting
the optional "end" specification: e.g., (start).

type ~ a symbolic operand form name expressed as:

8acan

register
control-value
control-code
eontrol-function
clasg-code

memory-reference

Mozt symbolic operands that are appropriate for a given machine
instruction format are reouired. When applicable, perticular
symbolic operands may be designated as boing "optional" by
enclosing their type and f£leld description(s) im percntheois: e.g.,

{type = (start-end)).

19

111

SECTION 13. MICRO-ASSEMBLY STATEMENTS

The micro-instruction format appears very similar to the machine-instruction
format as deseribed in Section 2. Whereas the machine-instruction format has the
characteristic of one operation specification per statement, the micro-instruction
format allows multiple operation specifications per statement, separated by commas.
The operand field for each operation specification immediately follows the
operation mnemonic and must be enclosed in parentheses. The operand field may
contain multiple operands, separated by commas.

The same directives utilized for target computer instruction set definition applies
for the micro-instruction definition as described in Section 9.

Micro-Instruction Default FPield Values

Micro-Instruetion fields may be designated for initialization with a value with
the DFIELDS directive. The specified field value will occur in the designated
field if the IFORMB processed for the micro-instruction do not reference the same
field.

Micro-Agsembly Diagnostic Control

Micro-Instruction fields may be designated for diagnostic control by the assembler
with the MFIELDS directive. Specified fields will be monitored for multiple field
references with conflicting field values during the IFORMs processed for a micro-

instruetion.

Micro-Assembly Vector Definition

The micro-program entry point vectors are defined via the VECTOR directive. This
provides the capability to describe the control core contents for linkage to the
micro-assembly module.

20

112

DFIELDS

Funetion

Designate micro-instruction fields that are to be initialized with the specified
value before each micro-instruction statement assembly.

Format
Name Operation Operand
DFIELDS value={start-end)[,value=(start-end)...]
Description
value= - the initialization for the field.

(start-end} -~ +the beginning and ending bit positions of the fleld to
receive the value.

Example
DFIELDS T=(1-5) ,X'A'=(21-2k)

This statement specifies the micro-instruction fields defined as bit positions
1-5 and 21-24 to be initialized with the values T and X'A' before each micro-
instruction statement assembly. Any micro-instruction statement may override
the default value in the IFORM processing.

Usage

This assembler statement must follow the START statement in the source module.
There is no limit to the nmumber of DFIELDS statements within a source module.

113

MFIELDs;
Function

Designate micro-instruction fields for diagnostic control by the assembler.

Format

Name Operation Operand

MPIELDS (start-end){,(start-end)...]

Description

(start-end) - the beginning and ending bit positions of the field
to be monitored.

Example

MFIELDS {12-15}, (19}, (31-k2)
This statement specifies the micro-instruction fields defined as bit positions

12-15, 19, and 31-42 to be monitored by the assembler for multiple field ref-
erences with conflicting values during a micro-instruction statement agsembly.

Usage

This assembler statement may occur anywhere in the source module. There iz no
© limlit 4o the number of MFIELDS statements within a source module.

22

114

" vecTor |

Funection

Define the control core entry contents for linkage to the micro-assembly module.
The object that is generated for this directive serves to construct a listing
of the control core contents.

Format
Name Operation Operand
symbol VECTOR len,0=0p,l={start-end)[,value-({start-end)...]

Description .

symbol - micro-assembly module statement label which may be
internally or externally defined.

len - No. bita in IROM data word
Q= - designates the op code operand
op - op code value
L= - designates the location opersand
(start-end) - the bit positions of the entry field
value - fleld setting value

Example

ADD VECTOR 11,@#=X'1A',L=(3-10),1=(2)

This statement defines a control core entry structure for the micro-assembly
module label ADD. The entry is 1l bits in length, the micro-assembly locatioa
for statement label ADD goes into bits 3-10 and bit 2 is always set to 1.

The op code for linkage to the statement label ADD is X'lA'.

Usage

This assembler statement must follow thecS8TART statement in the source module.
There is a limit of 256 VECTOR statements per assembly.

23

